Oxide.-The method of Chernova and Khokhlov¹⁰ was not successful for the preparation of these oxides from the amines in our laboratory. Oxidation of the amines was accomplished by peroxybenzoic acid.I6 A stoichiometric quantity of peroxybenzoic acid in cHc13 **(100** ml of **0.05** M) was added dropwise with stirring to a solution of the amine in CHCl₃ $(0.86 \text{ g} \cdot \text{in} 50)$ ml) at -35° . After 2 hr the solution was warmed to room temperature. After all the peracid had reacted, the CHCl₃ was removed under vacuum and the residue washed with ether. An equivalent of 6 *M* HC1 was then added to give the amine oxide hydrochloride which could be recrystallized from acetone. The hydrochloride of N , N -dimethyl-1-naphthylamine N -oxide melts at **170"** dec and N,N-dimethyl-2-naphthylamine N-oxide hydrochloride melts at 146–148° dec with nmr signals (acetone- d_{6} – $D_{2}O$, 5:1), at δ 9.5-7 (m, 7) and 3.76 [s, NO(CH_3)₂, 6]. The amine oxide was obtained using Ag₂O and recrystallized from acetone. N,N-Dimethyl-2-naphthylamine N-oxide had mp 152-155° dec and nmr (acetone-ds-DzO, **5:l)** 6 **9-7** (m, **7)** and 3.93 [s, NO- $(CH₃)₂$, 6]. N,N-Dimethyl-1-naphthylamine N-oxide rapidly hydrated and gave a variable melting point.

Irradiation of Trimethyl- and Triethylamine N-Oxides.--The amine oxide **(I** g) was dissolved in methanol and the solvent allowed to evaporate in a rotating, cylindrical vessel leaving a thin film of the oxide. This solid was irradiated in a vacuum with a medium-pressure, mercury-arc lamp in a quartz immersion well until all the amine oxide had disappeared from the surface (1-3 hr). The products, in a cold trap attached the vessel, were analyzed by gspc using a Poropak Q column **(10** ft X **0.25** in., $60 - 120$ °).

The irradiation solution of trimethylamine N -oxide was degassed and irradiated with the medium-pressure lamp in quartz, The products were separated from unreacted amine oxide by bulb-to-bulb distillation and analyzed by glpc. Besides their glpc retention times, trimethylamine was identified by its nmr spectrum, dimethylamine by mp $167-169^{\circ}$, mmp $166-$ 168" (lit *,16* mp **171")** of its hydrochloride salt, water by its melting point and color change with anhydrous copper sulfate, and dimethylformamide by its ir spectrum.

Registry No. $-T$ rimethylamine N-oxide, 1184-78-7; triethylamine N-oxide, 2687-45-8; N,N-dimethylaniline N -oxide, 874-52-2; 2-hydroxy- N,N -dimethylaniline, $3743-22-4$; $1-N,N$ -dimethylnaphthylamine N -oxide, $830-70-6$; $2-N,N$ -dimethylnaphthylamine N -oxide, $2-N$, N -dimethylnaphthylamine N -oxide, $34418-90-1$; N,N -dimethyl-1-naphthylamine N-oxide hydrochloride, 39717-26-5; N,N-dimethyl-2-naphthylamine N-oxide hydrochloride, 39717-27-6; peroxybenzoic acid, 93-59-4.

Acknowledgments.-This investigation was supported by a Public Health Service Research Career Development Award $(1-K4-GM 9888: V.I.S.)$ from the National Institute of General Medical Sciences and a NDEA traineeship (J. E. S.).

(15) J. R. Moyer **and** N. **C. Manley,** *J. Ow.* **Chem., 29, 2099 (1964). (la)** R. **C. Weast. Ed., "Handbook of Chemistry and Physics," 52nd ed,** Chemical Rubber Publishing Co., Cleveland, Ohio, 1971-1972, p C101.

Triangular Kinetic Schemes. An Elaboration

ROGER *S.* **MACOYBER**

Department qf Chemistry, University of *Cincinnati, Cincinnati, Ohio* 45221

Received January 50, 1973

We recently reported' the derivation of the analytical equations governing triangular kinetic schemes of the

(1) (a) R. *S.* **Macomber,** *J. 07s.* **Chem.,** *36,* **2182 (1071). (b) For a description of similar schemes, including those with reversible reactions, see R. A. Alberty and W. G. Miller,** *J.* **Chem.** *Phgs., 26,* **1231 (1957).**

type particularly common to solvolytic processes. Judging by the response to this paper, some amplification of the assertions given there is in order.

$$
\begin{array}{c}\n\text{RX} \\
\downarrow_{k_1} \\
\text{SOH} \\
\hline\n\text{RX} \\
\downarrow_{k_2}\n\end{array} \qquad \text{HX + ROS} \qquad (1)
$$

The exact solution^{1a} (in closed form) of the differential equations appropriate to eq 1 provides the relationship2

$$
[\text{HX}]_t = [\text{RX}]_0 \left[1 + \frac{(k_3 - k_1)e^{-(k_1 + k_2)t} - k_2e^{-k_3t}}{k_1 + k_2 - k_3} \right] \tag{2}
$$

The instantaneous "first-order" titrimetric rate constant **(kinst)** can be obtained as follows.

$$
\ln\left(\frac{[HX]_{\infty}}{[HX]_{\infty} - [HX]_{t}}\right) = \ln\left[\frac{k_1 + k_2 - k_3}{k_2 e^{-k_2 t} + (k_1 - k_3)e^{-(k_1 + k_2)t}}\right]
$$
\n(3)

$$
k_{\text{inst}} = \frac{\mathrm{d}}{\mathrm{d}t} \ln \left(\frac{[\text{HX}]_{\infty}}{[\text{HX}]_{\infty} - [\text{HX}]_{t}} \right) \tag{4}
$$

$$
= \frac{d}{dt} \ln \left[\frac{k_1 + k_2 - k_3}{k_2 e^{-k_3 t} + (k_1 - k_3) e^{-(k_1 + k_2) t}} \right]
$$
(5)

Extraction of the derivative, then multiplication by $\exp(k_3t)$, leads to

$$
k_{\text{inst}} = \left[\frac{k_b k_b + (k_1 - k_3)(k_1 + k_2)e^{Kt}}{k_2 + (k_1 - k_3)e^{Kt}}\right] \equiv \frac{N}{D} \tag{6}
$$

where $K = k_3 - k_1 - k_2$

The proof that the sense of curvature of "first-order" plots of titrimetric data (ln $[HX]_{\infty}/[HX]_{\infty} - [HX]_{t}$ *us.* time) depends only on the relative magnitudes of *k*₁ and *k₃* can be seen by examining the first derivative of k_{inst}
of k_{inst}
curvature = $\frac{d k_{\text{inst}}}{dt} = \frac{D \frac{dN}{dt} - N \frac{dD}{dt}}{D^2}$ (7) of **kinst**

$$
curvature = \frac{dk_{inst}}{dt} = \frac{D\frac{dN}{dt} - N\frac{dD}{dt}}{D^2}
$$
(7)

The *sign* of curvature is a function of the numerator in eq **7,** which expands to

sign =
$$
[k_2 + (k_1 - k_3)e^{Kt}][(k_1 - k_3)(k_1 + k_2)Ke^{Kt}] -
$$

\n $[k_2k_3 + (k_1 - k_3)(k_1 + k_2)e^{Kt}][(k_1 - k_3)Ke^{Kt}]$
\n= $k_2(k_1 + k_2 - k_3)K(k_1 - k_3)e^{Kt}$
\n= $(k_3 - k_1)K^2k_2e^{Kt}$ (8)

Since the last three terms are strictly positive, the nature of curvature is determined by $(k_3 - k_1)$; if $k_3 >$ k_1 , the plot will be concave upward and k_{inst} will increase with time, while if $k_3 < k_1$, the curve will exhibit negative curvature and **kinst** will fall off with time. Clearly, the *magnitude* of curvature (which can be calculated with eq *7)* will depend on the relative magnitudes of all three rate constants. If $k_1 = k_3$, the effect of the k_2 pathway will be titrimetrically unobservable. **la**

It has on occasion been incorrectly stated that extrapolation of k_{inst} (as defined by eq 4) to $t = 0$ provides a value of $(k_1 + k_2)$, even though Winstein and coworkers have used such graphical extrapolations to ob-

⁽²⁾ For the relevant equations when $k_3 = k_1 + k_2$, see footnote 9 of ref 1a.

Figure 1.—Titrimetric plots for $k_1 = 0.05$, $k_2 = 0.02$, and $k_3 =$ 2.0 (curve l), **0.7 (2),** 0.1 **(3),** 0.05 (4), 0.035 *(5),* 0.01 (e), 0.001 **(7).** Each curve covers *ca.* 4 half-lives.

Figure 3.—Titrimetric plots for $k_1 = 0.02$, $k_2 = 0.05$, and $k_3 = 2.0$ (curve 1), 0.7 (2), 0.1 (3), 0.05 (4), 0.035 (5), 0.01 (6), 0.001 **(7).** Each curve covers ca. 4 half-lives.

Figure 4.--Plots of **kinst** *us.* time for the data in Figure **3.**

tain values of k_1 ³ This misconception probably arises from a belief that the early stages of such reactions mimic the situation where $k_3 = 0$, but this is not the case. As can be seen from eq 6 at $t = 0$

$$
k_{\rm inst} = k_1 \tag{9}
$$

but, as demonstrated below, **kinst** rapidly increases to $k_1 + k_2$ when $k_3 \gg (k_1 + k_2)$. It *is* true, whether or not $k_3 = 0$, that $d/dt \ln ([RX]_0 / [RX]_t) = k_1 + k_2$ at *all* stages of the reaction (and monitoring actual disappearance of RX, e.g., spectrophotometrically, gives $k_1 + k_2$. However, d/dt ln $[RX]_t$ is only equal to d/dt ([HX]₃₀ – [HX]_t) when $k_3 = 0$ or $k_3 \gg k_1 +$ k_2 ⁴ It is also instructive to consider the latter stages of the reaction. If $k_3 > (k_1 + k_2)$, k_{inst} will approach $(k_1 + k_2)$ as $t \rightarrow \infty$, whereas if $k_3 < (k_1 + k_2)$, k_{inst} approaches *k3,* regardless of the sense of curvature.

Several further observations with eq 6 are pertinent. As expected,^{1a} if $k_3 \gg k_1 + k_2$ (*i.e.*, as $k_3 \rightarrow \infty$), eq 6 becomes

$$
k_{\rm inst} = k_1 + k_2 \tag{10}
$$

However, although eq *2* reduces to the appropriate form⁴ upon substitution of $k_3 = 0$, the same is not true for eq 3-8. For example, while it is easily shown⁴ that $k_{\text{inst}} = k_1 + k_2$ when $k_3 = 0$, eq 6 does not reduce to that result upon substitution of $k_3 = 0$. This is because the boundary conditions for obtaining eq **3** to that result upon substitution of $k_3 = 0$. This is
because the boundary conditions for obtaining eq 3
from 2 $(t \rightarrow \infty)$ erase part of the k_3 dependence. An equivalent way of appreciating this is to realize that the equations derived here apply when the infinity titer reflects 100% conversion of starting material to acid. If $k_3 = 0$, the infinity titer will be $k_1/(k_1 + k_2)$ times

the 100% infinity titer, and attempts to use this "observed" infinity titer for fitting eq **3-8** will lead to erroneous values for the rate constants. It is always preferable to use the theoretical $(100\% \text{ conversion})$ infinity titer to obtain the most information from plots of eq **3.** When one is dealing with situations where k_3 is known to be negligibly small, the appropriate equations4 should be generated from eq *2.*

Finally, it is useful to examine the effect on titrimetric plots and k_{inst} of variations in k_3 . By defining the half-life of the reaction as $0.69/(k_1 + k_2)$, then arbitrarily fixing the values of k_1 and k_2 , one can vary *ICs* and plot eq **3** and **6** as functions of time. For example, Figure 1 shows titrimetric plots where k_1 = 0.05, $k_2 = 0.02$ ($t_{1/2} = 10$ time units), and k_3 varies from 2.0 to 0,001. Figure *2* shows the behavior of **kinst** over the same interval. A similar pair of plots is shown in Figures 3 and 4, where the values of k_1 and k_2 have been interchanged. These plots summarize the preceding discussion. If $k_3 > 10(k_1 + k_2)$, titrimetric plots will be essentially linear with slope $k_1 + k_2$. In the region $10(k_1 + k_2) > k_3 > k_1$, plots exhibit positive curvature, and k_{inst} approaches the lesser of k_3 or $(k_1 + k_2)$. When $k_3 = k_1$, the plot is again linear, but with slope k_1 . Further decrease in k_3 gives rise to negative curvature, and k_{inst} approaches k_3 . Again, for experimental fittings of these lines, one must use the theoretical infinity titer *(vide supra).*

An iterative nonlinear least squares Fortran IV program has been written to extract the values of k_1 , k_2 , and k_3 from experimental titrimetric (or equivalent) data, by obtaining the best fit of eq **3.** A listing will be supplied upon request.

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemican Society, for support of this work.

⁽³⁾ See, for example, W. *G.* **Young,** S. **Winstein, and H. L.** Goering, *J.* **Amer. Chem.** *Sac., 13,* **1858 (1951).**

⁽⁴⁾ Footnote 7, ref la.